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Abstract 

Effects are defined in this paper as observable changes in the state of a macrosystem, which 
are caused by interaction with a microsystem. These effects are the starting point of 
Ludwig's axiomatic foundation of quantum theory. In this theory the concept of com- 
mensurability is developed by considering effects which can be caused together, by or~e 
single microsystem. Such effects are called coexistent. It is shown that in ordinary quantum 
mechanics the formal definition of coexistence and the corresponding postulates given by 
Ludwig are consistent with the dynamics of interaction processes leading to effects. 

1. Introduction 

In recent publications (Ludwig, 1964, 1967a, 1967b) G. Ludwig has 
given a new axiomatic foundation of quantum mechanics and more general 
theories. This foundation is not based on J. von Neumann's  measuring 
process or one of its current modifications, thereby circumventing well- 
known difficulties arising in this connection. The experimental basis consists 
of some class of real processes induced by microsystems and resulting in 
observable effects. An effect is defined here as any observable change 
caused in the state of a macrosystem by a microsystem. The occurrence 
rate of the effect in long series of experiments under identical macroscopic 
conditions is /x(V,F). V is the symbol for the macroscopic conditions 
under which the microsystems are prepared. F is the symbol for the effect, 
including the macroscopic conditions of the process resulting in the effect. 
The determination of/z(V, F)  is reproducible. It  is sufficient to reestablish 
the proper macroscopic conditions. The number/~(V, F), together with the 
specification of the macroscopic conditions, should be the only raw material 
f rom which the mathematical language expressing properties of micro- 
systems is to be extracted. G. Ludwig's axiomatic foundation of quantum 
mechanics is adequate for this program. 

Effects F and F '  are said to be equivalent, if/~(V, F)  =/z(V, F ' )  holds 
with arbitrary V, and in analogy V and V' are equivalent, if I~(V,F)= 
I~(V',F) with arbitrary F. In the course of the axiomatic foundation the 
classes f(V) and g(F) of equivalent V and F are represented by vectors Ir 
in a real Banach space B, and vectors F in its conjugate B' ,  respectively. 
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The definition of B stems from the fact that it is possible to mix the objects 
resulting from procedures V1 and V 2 in some proportion A/1 - A, which 
yields/~(F, F)  = A/~(F1,F) + (1 - ,~)/~( F2,F ). The class of V is represented 
by V = AV I + (1 - A) V2. B is defined by allowing real finite coefficients in 

X= ~ a~ V~ 
i=l  

and introducing the norm 

llx[I = supF f (x,F)l = 

By F(X)=/z(X,F)  (fixed F)  the effects become linear functionals on B. 
For  a rigorous construction see Ludwig (1964). 

Particular attention is given to axioms concerning commensurability. To 
clarify this concept one has to look for different effects Fy (7 = 1,2 . . . .  ,n) 
possibly occurring as results of interaction of one single microsystem with 
one or several macrosystems, and look for the mathematical structure of 
the set I={F1,F2,...,F,) formed by g(F~,)-+ F~, (the arrow stands for 
'represented by') in B'. This suggests the definition of coexistent sets l in 
B'. The axioms state: Whenever a coexistent set l '  ={F/,F2' ,  .... F~,) is 
given in B'  then there are sets l~ -~-~  , z . . . . . .  ,,,~ 
of effects which may be produced by one single microsystem and 
g(F~ ")) --> F s (v E I, j = 1,2,..., n'). 

If  quantum mechanics is a realization of the axiomatic system given by 
G. Ludwig it must be possible to check the axioms by means of quantum 
dynamics applied to interaction processes of microsystems and macro- 
systems resulting in effects. This is a check on the dependence of the truth 
and completeness of the dynamical principles under consideration. The 
purpose of this paper is to show that the definition of coexistence meets 
exactly the situation in quantum mechanics, if one takes into consideration 
only the unitary representation of the time translations. 

In Section 2 the definition of coexistence given by G. Ludwig is repeated. 
Section 3 contains the analysis of the interaction process leading to Theorem 
2, which states the equivalence of the two statements: O) g(Fl) and g(F2) 
contain pairs of effects (F(,Fz')~ (g(Fl), g(Fz)), which can be produced 
together by one single microsystem; (ii) if g(Fl) --> F~ and g(Fz) -+ 1:2 then 
{F~, 1:2) is a coexistent set in B'. The proof  of Theorem 2 is given in Section 4. 

2. Definition of  Coexistence 

If  different effects F7 (7 = 1,2 . . . .  ,n) occur as a possible result of the 
interaction of one single microsystem with one or several maerosystems, 
it is possible to construct another macrosystem, with effects FT' (y = 1,2 . . . .  , 
n,...,m) possibly occurring in such a manner that with arbitrary V, 
I~(V,F~)=t~(V,F~, ') ( 7 =  1,2 . . . . .  n) hold, and F r' (7 >n)  counting the 
combined occurrences of non-occurrences of effects F / .  (7' < 7). This can 
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be done by adding some electronics to the first macrosystem (Ludwig, 1964). 
Let F~,'4-F~' symbolize the effect F , '  of  exclusive occurrence of F~' and 
F~', and let F,,' o Fr symbolize the effect F~' of the combined occurrence, 
then, with arbitrary V, 

IX(V,F~') + IX(V,F~') = ix(V, F=' 4 F~') + 2ix(V,F~' o F~') (2.1) 

must hold. If  all combinations of occurrences are included in the set 
{FI',F2',...,F,,'}, it becomes a boolean algebra a with the operations ' + '  
and 'o ' .  From 

IX(V,F~')+IX(V,Fr if F ~ ' o F / 3 ' = 0  (2.1a) 

one infers that any V defines an additive measure function on a. Written 
in terms of B'  by g(F~') -+ ]F~, g(F~') ~ F~, and g(F~'-i- FI3' ) -+ F, this 
reads 

F~+I:~=F~ if f ~ ' o  Fr = 0 (2.1b) 

Define now by g(F~') =/:~, if (and only if) g(Fr') -+ F~, a vector measure 
on a. By (2.1a)~ is inferred to be additive. This suggests the following 
definition: 

Definition 
A finite set l of/:~ (~: = 1,2 . . . . .  n) representing classes of effects in B'  is 

coexistent if and only if there is a boolean algebra a with an additive vector 
measure ~ on a, such that l is contained in the range of ~. 

To connect this with the following analysis of interaction processes, we 
use a theorem, which is proved by Ludwig (1967a). 

Theorem 1 
F, G, representing classes of effects in B', form a coexistent set if and 

only if there are three vectors I:1, F2, and F3, with 

F =/:1 +/:2, G = F 1 + F3, 

and F 1, 1:2, 1:3, F 1 + ]7 2 -t- F 3 represent classes of effects in B'. 

3. Statement of Objective 

In quantum mechanics B is the Banach space of Hermitean trace class 
operators of a Hilbert space 91. The convex set of statistical operators 
Wj 1> 0, tr W1 = 1 is the subset of operators in B representing preparation 
procedures, the convex set of operators F, F = F +, 0 ~< F ~< 1 is the subset of 
operators in B'  representing the effects, and/z(WI, F) = tr(W1F). We shall 
refer hereafter to 91 as the Hilbert space of the microsystem, and refer to 
92 as the Hilbert space of the macrosystem. Then 91 | 92 is the Hilbert 
space of the coupled systems. A necessary condition for the possibility of 
interaction processes translating a statistical operator W~ at time t = 0 

10 



150 K.-E. HELLWIG 

into Wf at time t = tl in 91 | 92 is the existence of a unitary operator U 
with Wf = UWz U +. It is only this dynamical principle that we shall consider 
here. 

The guiding idea to describe processes resulting in effects is as follows 
(Hellwig, 1967). At the beginning of the interaction process with the micro- 
system the macrosystem is in state of metastable equilibrium. Any change 
in state of the macrosygtem caused by the microsystem must have occurred 
after a finite time ~-. In this respect it is irrelevant whether the microsystem 
is absorbed by the macrosystem or not. If absorbed the microsystem has 
lost its surplus energy (or any other properties which may trigger the 
macrosystem) by multiple scattering and, in a certain sense, is in equilibrium 
with the macrosystem. If not absorbed the microsystem has left the macro- 
system. In any case the macrosystem may be regarded macroscopically as 
the same before and after the interaction. To ascertain a possibly occurring 
effect to be caused by the microsystem, ~, must be short in comparison to 
the mean lifetime ~'0 of the metastable equilibrium. 

Denote by Wz the statistical operator of the coupled system at the time 
t = 0, when the interaction process begins. Furthermore let We be the 
statistical operator at time t =  t8 > ~r, but tB ~ "r0, in 9~ | 92. When 
investigating only effects corresponding to equilibrium states of the macro- 
system we do not need to fix tB exactly in a series of experiments. Let 
Q2 = Q be the projection in 92 which corresponds to the macroscopically 
observable property of the macrosystem belonging to the effect F. The 
rate of occurrence is 

/4V, F) = tr(Wf(1 | Q)) 

If the microsystem is absorbed, dearly I | Q has to be replaced by a more 
general Q, Q : =  Q in 91 | 92. However, the difference is mere formal 
play, since the impurity in a macrogystem caused by a single atom does not 
alter macroscopically observable properties. Let S be the unitary trans- 
formation responsible for the temporal translation from t = 0 to t = tB of 
the coupled ensemble in 91 | 92, then 

~(V,F) = tr(SWzS+(1 | Q)) 

W~ has the form WI | WM, where WI is the statistical operator corre- 
sponding to the preparation procedure V. WM indicates when the macro- 
system is in metastable equilibrium. Hence 

tL(V,F)=tr(S(W1 | W~)S+(1 | Q)) 

It is easy to show that there is one, and only one, linear symmetric operator 
F, 0 ~< F ~< 1 in 91 with the property that for any WI in 91 the following 
result holds 

tr(S(W~ | WM)S+(1 | Q)) = tr(WxF) 
That is 

I~(V,F) = tr(W1F) (3.1) 
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The operator F is determined by the bilinear form 

(% FX) = ~, wj(~@j, S+(1 | Q) Sx~) (3.2) 
J 

defined for any two % X ~ 55 ~- The wj and ~j are due to a spectral representa- 
tion W~ = ~ j  w~P~r (%Fx) is insensitive to rotations in eigenspaces of 
WM. 

The ra te /z ( t ;F)  of occurrence of F, at the time t = tB, is identified here 
by the value of tr(W~F) at the time t = 0. When we know the unitary 
representation of temporal translations Ut in 551 for the microsystems it is 
a straightforward matter to identify these values at the same time (t = tB) 
or in some other way. For the consideration below we need the structure of 
connections (2.1) and (3.1) only. 

I f  there are several different outcomes of such processes possible which 
are macroscopically observable the corresponding projection operators 
Q~, (~, = 1,2 . . . .  ,n) must commute. For reasons of simplicity the discussion 
will be restricted to the two properties P and Q. Then the following theorem 
holds: 

Theorem 2 
Let two linear symmetric operators F and G in 55 1 with 

0 ~ < F ~ I ;  0~<G~<I (3.3) 

be given. Now choose two different projection operators Q and P in -~2 
with 

[Q, P] = 0 (3.4) 
and 

1 - Q - P +  OPr (3.5) 
Finally define a statistical operator W2, by choosing N mutual orthogonal 
vectors ~j, and N positive numbers w~ with ~ j  wj = 1. 

A unitary operator S in 551 | 552 yielding 

(q), FX) = ~ w~(~r S+(1 | Q) Sxr (3.6) 
J 

(q:, GX) = • wj(e?~bs, S+(1 | P) SX~b j) (3.7) 
J 

for any two vectors % X s 55~ exists if and only if there are three linear 
operators F~ (~ = 1,2, 3) with 

O~<F~; O<~FI+F2+F3<~I (3.8) 
and 

F= F, + F2; G--= FI + F3 (3.9) 

This shows that if two effects are not represented by operators F, G, 
which form a coexistent set of operators in B', they can in no way be 
generated as result of an interaction process of a macrosystem with one 
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single microsystem, because the desired process contradicts a general 
dynamical principle. This process is possible at least in principle if and only 
if {F, 6] form a coexistent set in B'. 

Assumption (3.5) looks somewhat artificial. That it is necessary in 
general one infers from the following corollary: 

Corollary 
Assume equations (3.6) and (3.7) to hold with Q + P - Q P =  1, then 

F, + F2 + F3= I. 
If conversely equations (3.8) and (3.9) hold with Fx + F2 + F3 = 1 it is 

possible to choose Q + P - QP equal to 1 or less than 1. 

4. Proof of Theorem 2 
a. Necessity 

If we write 
QI = QP, Q2 = Q -  QP, Q3 = P -  QP (4.1) 

then Q2  = Q~. Define F~ (~ = 1,2, 3) by 

(%F~,x) = ~ w2(q~b~, S+(1 | Q=) Sx~b~) (4.2) 
g 

Taking (3.6) into consideration, from S+((1 | Q1)+(1 | Q2))S= 
S+(1 | Q)S we get at once (%(FI + F2)X) = (%Fx) for any two % X e 5t ,  
hence F=Fa +F2. Analogously we show that G =  Fl +F3. Further 
0 ~<F= (~ = 1,2,3). From 

3 
Z = Z Q  

==1 

it follows that 

@,~F~cp)=~wj (q~ ,S+(1  | Z) Sq~bj) -..< 1 

which completes the proof of necessity. 

b. Sufficiency 
Extend the number of mutual orthogonal vectors ~bj by N other vectors 

~bz~+~ ( j  = 1,2,3 .... ,N) resulting in 2N normed and mutual orthogonal 
vectors. If we denote by 9~j the N snbspaces of 52, spanned by {~bj, ~b~+t} , 
fixed N andL we have 

and 

5 1 |  .~ (51| @ ( 5 1 @ ~ )  (4.4) 
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Put 
3 

F , = I -  ~ F~ (4.5) 

The conditions of a well-known theorem (Riesz & Nagy, 1960) then apply: 
Every finite or infinite sequence {F.) of bounded self-adjoint trans- 
formations in the Hilbert space -~1 such that 

F,~>0, ~ F , =  1 (4.6) 
n 

can be represented in the form 

F, = prE, (n= 1,2,3 . . . .  ) 

where {E,} is a sequence of projections of an extension space .~ for which 

E,.Em = 0 (n #m)  (4.7) 

E, = 1 (n r m) (4.8) 
// 

prE, means the following: Let P be the projection in .~ onto ~ ,  then 

PE, P = pr E, (4.9) 

By the following method, N arbitrary extension spaces $)s of.~l (J = 1,2, 3, 
..., N) formed in the sense of the theorem quoted are embedded in ~ l | 9.Is. 
First identify 50 ~ -~1 c ~s by 50~b s ~ ~ | Ns. Let {f2~} denote a fixed com- 
plete orthonormal system in ~s @ 5t and {X,} a fixed complete orthoe 
normal system in 5~, then identify 

M 

k=l  

by f~bN+j ~ ~ 1  | ~[J where 

Clearly 

M 
f =  Y. c~xsk 

k=l  

M 
(4,#)=(f,f')(~N+j,~N+3 =(f,f')= Y C~*C~' (4.10) 

k~l  

Then limit elements of converging infinite sequences {~v} in -~s @ ~ l may 
be identified by the limit elements of fv ~N+s ~ ~l  | ~l[s. The unique decom- 
position of any W ~ -~s in W = ~k bkF2k + ~ with ~k bkf2k ~ "~S @ 551 and 
~b ~ ~1 guarantees that any element of -~s is identified by an element of 
~1 | 9.Is. The projection Ps corresponding to P in the theorem quoted is 
given by 

Ps = 1 | P~s 

Let T~ ) be the projections onto the subspaces of ( ~  | ~Is) @ -~s spanned 
by {Xs~_OSbN+s} (/3= 1,2,3,4). In case of dim(01 @ ~ l ) = d <  oo the 
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projection onto the subspace spanned by the vectors {Xs(d+,,) ~bN+j} shall be 
R (j), if d =  oo then R (j) = 0. Denote by E~ ) (/3 = 1,2,3,4) the operators with 
the properties (4.6) through (4.9) in *gj then 

with 

Ec~ (J) - T (J) + E ( J )  (o~ = 1, 2, 3) 

E4(J) - -  T (J) E4(J) R(J )  - - J - 4  "q- -}- 

4 

(/3:/33 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

dimE~J)(-~l @ ~ j )  = 

(1 - " E < J ) r l  = F/3 

(/3,/3' = 1,2,3,4). Considering (4.4), define in ~l | ~2 

(4.15) 

(4.16) 

and 

(~=1,  2, 3) 

E4 = {j~N~ E4 ~)} Q lr~,e~ 

(4.17) 

(4.18) 

The relations (4.13) through (4.16) also hold for E/3, if.~l | 2[j is replaced 
by .~ @ -~2. Therefore a unitary operator S in ~l | 92 with 

E~=S+(1 @ O~,)S (c~= 1,2,3) (4.19) 

exists. For any j  ( j =  1,2,...,N), (~= 1,2,3), and any two % X ~ I  we 
have 

(,~,/,~, E~,x,/,~) = ( , m  j ,  ~, xr = (r F~ x )  (~bj, S+(1 | Qo,) Sx~bj) = " " E~J) 

Also 
N 

w j = l  
j = l  

thus 
N 

(% F~ X) = ~ wj(~oCj, S+(1 | Qo,) Sx~bj) (4.21) 
j = l  

From a consideration of (4.1) and assumption (3.9) the relations (3.6) and 
(3.7) follow which completes the proof of sufficiency. 
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For  a proof  of  the first supposition of the corollary note that 

Q + P -  Q P = I  
implies 

3 

EQ =I 
~=1 

By adding up equations (4.2), one infers ~ ,  F~, = i. The proof  of  the second 
supposition can be performed in analogy to the proof  of  sufficiency of 
the theorem. 
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